2022醫(yī)療人工智能報告:距離盈利,醫(yī)療AI還有多遠?

以下文章來源于:動脈網(wǎng)

從《海伯利安》到《賽博朋克2077》,每一個描述AI時代的視聽作品都在不厭其煩地繪制科技時代的技術、建筑、生活,樂于討論賽博時代與生存、發(fā)展、共生相關的哲學問題。


但當AI褪下虛幻的面紗,以潛移默化的方式真正進入人們的生活時,更為必要的是跳出技術的表現(xiàn)形式,追溯它的發(fā)展動力。


過往的五年時間,近千億資金注入醫(yī)療人工智能賽道,影像AI、新藥研發(fā)AI、機器人AI、智慧醫(yī)院等細分賽道以前所未有的速度向前發(fā)展。外界的持續(xù)滋養(yǎng)下,AI已經(jīng)在醫(yī)療中的方方面面落地生根,成為媲美互聯(lián)網(wǎng)技術一樣的存在。


問題也出在此。超千家企業(yè)入局,但少有企業(yè)實現(xiàn)盈利。下一個五年,當資本的涓流不再饋贈,圍繞AI的企業(yè)們能否筑起成熟的造血系統(tǒng),依靠自身的力量活下去?


帶著問題,我們與超過30家企業(yè)進行溝通、近100位專家進行采訪,圍繞整個產(chǎn)業(yè)發(fā)展流程進行調(diào)研,一步一步回答“醫(yī)療人工智能如何盈利”這一行業(yè)難題。


定義醫(yī)療AI的兩個階段


AI發(fā)軔時的目標作用方式在于對過往人類活動的“替代”與“優(yōu)化”,實現(xiàn)智慧賦能下的降本增效,可謂AI1.0。


十年發(fā)展,這類醫(yī)療AI對于醫(yī)生診療效率及患者看病流程的優(yōu)化已非常成熟。一個直觀的感受是,不少三甲醫(yī)院的門診大廳沒有過去那么擁擠了,線上的智慧化信息流解決了問題。


這個過程中,AI技術本身也在不斷探索與臨床深度結合的可能性,嘗試以優(yōu)化臨床路徑的方式賦能醫(yī)療。由此而生的產(chǎn)品,在報告內(nèi)被歸類為AI2.0。


AI2.0是AI1.0應用場景范疇的延展,與AI1.0的差異判別在于:是否能夠?qū)⒅R與算法深度融合,對已有醫(yī)療流程進行重塑。簡單來說,初始的AI注重于強化作用主體的效率,而進階的AI有能力將流程進行推倒重建,圍繞AI能力建立新的秩序。


此外,醫(yī)療AI2.0的價值創(chuàng)造方式也與AI1.0有所不同。1.0時代是覆蓋式創(chuàng)新,即肺部做完了轉(zhuǎn)向腦、心、肝等臟器,而2.0時代的創(chuàng)新是以1.0創(chuàng)新成果為基礎的單點式創(chuàng)新,即各企業(yè)在各自領域探索AI的深層次價值,沒有形成1.0時代的AI產(chǎn)品矩陣規(guī)模。


兩種AI以各自的方式賦能醫(yī)療體系,為協(xié)同關系而非競爭關系。目前醫(yī)療AI行業(yè)已有不少成熟的AI2.0式應用,在這背后,日益豐富的高質(zhì)量醫(yī)療數(shù)據(jù)與逐步多元的算法為AI創(chuàng)新提供了重要支撐。


那么從1.0到2.0時代的躍遷什么最重要?決定AI品質(zhì)的算法、算力、數(shù)據(jù)三要素,真正能夠形成壁壘的還是算法與數(shù)據(jù)。


以輔助診斷類AI為例。AI1.0時全球范圍內(nèi)均缺少開源的醫(yī)療大數(shù)據(jù),AI企業(yè)能夠直接獲得的數(shù)據(jù)很少,存在數(shù)據(jù)量小、標準化低、標注成功率低、數(shù)據(jù)類型有限(以肺結節(jié)為主)。


在這個階段,企業(yè)獲取有效數(shù)據(jù)集必須與醫(yī)院進行合作,在取得脫敏數(shù)據(jù)后對其進行分類、標注、訓練。由于整個過程均需人工進行,單個數(shù)據(jù)標注成本在10-30元不等,耗時20-40分鐘,投入有限但耗時極長,尤其要獲得高質(zhì)量的標注,企業(yè)/醫(yī)院必須找到資深醫(yī)生進行標注,標注的難度由此大大提升。


伴隨AI技術愈發(fā)成熟,2020年開始,大量醫(yī)院自發(fā)加入的單病種影像數(shù)據(jù)庫、第三方測試數(shù)據(jù)庫的構建中,數(shù)據(jù)量呈現(xiàn)指數(shù)增長,AI企業(yè)進行新適應癥開發(fā)面臨的難度驟減,加之第三方數(shù)據(jù)庫逐漸形成規(guī)模,醫(yī)療AI的產(chǎn)品豐富程度隨之增長,AI企業(yè)打造的數(shù)據(jù)壁壘開始削弱,算法壁壘的作用開始凸顯。


另一方面,國家藥監(jiān)局器審中心于2022年3月7日發(fā)布了的《人工智能醫(yī)療器械注冊審查指導原則》(后簡稱《指導原則》)重新描述了人工智能醫(yī)療器械的概念、注冊基本原則、人工智能醫(yī)療器械生存周期過程、技術考量等部分。值得注意的是,該政策對人工智能審批適用的算法進行了完善,在深度學習的基礎上加上了遷移學習、集成學習、聯(lián)邦學習、強化學習、生成對抗網(wǎng)絡、自適應學習。


微信圖片_20221009133757.png

各類AI算法的內(nèi)容與監(jiān)管(數(shù)據(jù)來源:蛋殼研究院)


在文件發(fā)布后,更多創(chuàng)新算法審評審批流程得到確認后,醫(yī)療AI的壁壘逐漸向算法偏移,更為豐富的算法將進入市場,以更為有效的方式賦能診療流程。


總的來說,無論是AI1.0還是AI2.0,醫(yī)療AI的價值都在于通過智能化重塑數(shù)字化醫(yī)療,這是一個緩慢而持續(xù)的過程。目前,AI+輔助診斷與新藥AI等主流AI產(chǎn)品處于商業(yè)化的過渡期,即具備高準確度、可復制的模型;NMPA給出的醫(yī)療器械認證;完備的知識圖譜;穩(wěn)固的合作伙伴等等商業(yè)化組,但由于市場對于新技術認可的滯后性,大部分目標醫(yī)院/藥企因?qū)χ悄芑a(chǎn)品效益、創(chuàng)業(yè)公司能否持續(xù)經(jīng)營運維持懷疑態(tài)度,因此付費率仍有提升空間。隨著市場對于AI價值的不斷認可,醫(yī)療AI企業(yè)們的商業(yè)化能力將逐步增強,或在數(shù)年之內(nèi)實現(xiàn)扭虧為盈。


醫(yī)療AI的資本市場:

誰在入局,誰在深潛?


盡管不同階段的AI各有其價值,但資本對于賽道的偏愛還是能夠通過數(shù)據(jù)直觀地體現(xiàn)出來。


從全球范圍看,基于計算機視覺的AI輔助診斷與基于NLP的醫(yī)療知識圖譜構建是醫(yī)療AI之中跑得最快的兩個領域。尤其是AI輔助診斷,在2015-2020年這個區(qū)間之內(nèi),數(shù)百家企業(yè)涌入這個賽道,超過百家企業(yè)從一級市場獲得融資。


但在2022年,新藥AI脫穎而出,成為整個領域最為火熱的賽道。


2021統(tǒng)計年(2020年9月1日-2021年8月31日)總計發(fā)生的35起披露輪次新藥AI融資中,早期項目(B輪以下,不包括B輪)占據(jù)了80%,2022統(tǒng)計(2021年9月1日-2022年8月31日)年整體數(shù)量由28起增至32起,早期項目仍維持有76%的比例。


2021年前,資金往往聚集于晶泰科技這樣的頭部企業(yè),新藥AI初創(chuàng)公司融資項目極為有限,但從近兩年新藥AI一級市場表現(xiàn)可知,新藥AI已經(jīng)成為AI技術中最具可投性的賽道,大量投資機構蜂擁入場,將AI的應用場景從晶體發(fā)現(xiàn)、臨床患者篩選引向了制藥流程的方方面面。


微信圖片_20221009133810.png

2021年及2022年新藥AI融資輪次情況(數(shù)據(jù)來源:蛋殼研究院)


此外,同為軟件開發(fā),新藥AI的估值要比AI支持下的其他賽道貴上不少。統(tǒng)計數(shù)據(jù)顯示,處于天使輪的項目均需千萬元以上,A輪(包括Pre-A輪、A+輪)企業(yè)募集的資金超過半數(shù)已過億元。投資人對于新藥AI賽道非常樂觀,晶泰科技后期單輪3-4億元的募資額,新合生物5億元A+輪融資、百圖生科1億美元A輪融資均充分顯示一級市場相信新藥AI有著美好的圖景。


再看商業(yè)化最成熟的影像AI領域。2021年醫(yī)療AI掀起上市潮后,科亞醫(yī)療、零氪科技、推想醫(yī)療、數(shù)坤科技等影像相關企業(yè)相繼遞交招股書;同年11月鷹瞳科技成功上市。


但這波勢頭在2022年戛然而止,大部分頭部AI企業(yè)現(xiàn)金流較為穩(wěn)定,資金儲備充足,出于經(jīng)濟壓力下行的破發(fā)憂慮,截至9月15日,國內(nèi)僅博動醫(yī)學遞交招股書。值得注意的是,該企業(yè)以冠脈介入精準診斷為主攻方向,AI支持下的QFR僅是其產(chǎn)線之一。


上市之后,多家企業(yè)表現(xiàn)不俗。營收均呈現(xiàn)出不同幅度的正增長,表明市場進一步拓展。其中數(shù)坤科技2021年上半年同比增長達681%,收入已成規(guī)模的鷹瞳科技仍然錄得142%的增長,2021年全年營收破億。


微信圖片_20221009133816.png

交表企業(yè)主營收入分析(數(shù)據(jù)來源:各公司招股書、年報,蛋殼研究院)


不過,凈利潤為負也是每家企業(yè)不可回避的事實。蛋殼研究院認為:AI企業(yè)仍處于高速發(fā)展階段,需要較高的技術研發(fā)投入維持競爭力,保證前沿市場的探索;另一方面,盈利規(guī)模效應初現(xiàn)苗頭,其規(guī)模還有待提升,在高額的研發(fā)開支下,有限的營收目前不足以支撐凈利潤的大幅增長。


值得注意的是,絕大多數(shù)醫(yī)療AI企業(yè)的抗風險能力正在逐步增強。我們能夠看到,不少企業(yè)的前五大客戶營收占總營收比率不斷下降,商業(yè)化路徑逐步多元、分散,此趨勢下,手握數(shù)十億現(xiàn)金流的AI企業(yè)有充分時間找到自己的定位,逐步實現(xiàn)盈利。


微信圖片_20221009133821.png

最大客戶分析(數(shù)據(jù)來源:各公司招股書、年報、Lunit BP,蛋殼研究院)


  IPO之外,多因素影響商業(yè)變現(xiàn),

盈利需要突破這些檻


企業(yè)的IPO數(shù)據(jù)反映了最成熟AI技術的商業(yè)化現(xiàn)狀,但已商業(yè)化技術可能并非最具潛力,由此獲得的收入也不能反映企業(yè)未來盈利能力。報告將對醫(yī)療AI目前作用的四個主要場景進行完整分析,探尋IPO之外的AI產(chǎn)業(yè)發(fā)展現(xiàn)狀及盈利能力。本文以影像AI部分為例進行介紹分析。


作為醫(yī)療AI行業(yè)發(fā)展的風向標,截至9月1日已累計28家企業(yè)49款AI產(chǎn)品獲得第三類醫(yī)療器械注冊證,包含總計29款搭載深度學習算法的軟件。從整體趨勢看,國家藥監(jiān)局批準AI醫(yī)療器械三類證的速度不斷變快,加速了醫(yī)療AI的商業(yè)化進程。


微信圖片_20221009133827.png

獲證數(shù)量按照年份統(tǒng)計(數(shù)據(jù)來源:蛋殼研究院)


醫(yī)療三類證總量隨時間推移不斷上升,其同質(zhì)化水平也不斷加劇。49款AI產(chǎn)品總計涉及15個輔助診斷場景,其中,基于CT影像的肺結節(jié)AI多達9個,其次是借助眼底相機進行診斷的糖尿病視網(wǎng)膜病變AI,有7家企業(yè)拿到了市場的準入許可。CT-FFR、CT肺炎緊隨其后,各有6家三類證,除AI心電領域樂普醫(yī)療獨下4張三類證外,放療、骨折、骨齡、顱腦出血、青光眼五個場景均有不止一家企業(yè)的AI產(chǎn)品通過審評審批。


微信圖片_20221009133832.png

三類證獲取按照病種分類統(tǒng)計(數(shù)據(jù)來源:蛋殼研究院)


進一步討論醫(yī)療AI作用的設備。當前所有獲批產(chǎn)品使用的數(shù)據(jù)均來自于CT、眼底相機、X光、心電圖機、MR、腸鏡六類設備。CT場景作用范圍廣,作用價值高,患者人數(shù)多,標準數(shù)據(jù)量大,因而成為AI企業(yè)研發(fā)的首選,相關AI以31款的數(shù)量遙遙領先其他設備,而MR影像較為復雜,數(shù)據(jù)量偏少,腸鏡影像標準化困難,均僅一款AI產(chǎn)品獲批。


微信圖片_20221009133836.png

 醫(yī)療人工智能作用設備分類統(tǒng)計(數(shù)據(jù)來源:蛋殼研究院)


超聲是AI企業(yè)下一個審評審批可能迎來突破的重點賽道。超聲檢查所產(chǎn)生的數(shù)據(jù)比CT、DR二維的數(shù)據(jù)多了一個時間維度,且檢查過程中可能存在大量無診斷意義的幀數(shù),需要AI在動態(tài)環(huán)境下甄別每一幀的價值,將其相互對比,提取到特定時刻的責任切面,才能進行有效的影像分析。


病理AI的形勢相對嚴峻,面臨著審評審批體系之外的困難。由于影像輔助診斷處于產(chǎn)業(yè)鏈的中游,依賴于上游影像設備的統(tǒng)一,而國內(nèi)主流的電子顯微鏡廠商沒有指定統(tǒng)一的數(shù)據(jù)標準,也沒有理由根據(jù)行業(yè)指定的數(shù)據(jù)標準對電子顯微鏡進行更改,因而在數(shù)據(jù)的互聯(lián)互通上存在一定問題。該場景中迪英加、錕元方青、深思考等部分病理企業(yè)已拿到醫(yī)療器械二類證,能夠進行一定規(guī)模的AI銷售。


總的來說,在審批愈發(fā)成熟的條件下,醫(yī)療AI的開發(fā)成本逐漸變得可控,更多面向小眾場景的影像AI也逐步拿到了器審中心頒布的三類證。譬如微視醫(yī)療在腸息肉中的研究、西門子在胸椎影像中的研究同樣為其拿下醫(yī)療器械三類證,未來醫(yī)療AI的應用場景將隨審評審批流程的成熟而進一步擴大,醫(yī)療AI企業(yè)也將獲得更多規(guī)避風險的能力,有效降低研發(fā)成本。


完成市場準入的各個AI可以在探索物價準入與醫(yī)保準入的同時進行商業(yè)轉(zhuǎn)化。目前各企業(yè)正在積極推動省市物價準入,如科亞醫(yī)療“深脈分數(shù)”已跑通北京市、河北省、山東省、浙江省、江蘇省等11 省物價環(huán)節(jié);博動醫(yī)療的QFR物價已獲得11個省市的批準;鷹瞳科技的眼底AI完成5個省市物價準入。醫(yī)保準入方面,2021年4月,上海醫(yī)保局將“人工智能輔助治療技術”等28個新項目納入上海市基本醫(yī)療保險支付范圍,其中“人工智能輔助治療”的限定支付范圍為前列腺癌根治術、腎部分切除術、子宮全切術、直腸癌根治術。


盡管物價準入和醫(yī)保準入獲得一定突破,但仍未成規(guī)模。我們認為,盡管國內(nèi)AI企業(yè)希望保持獨立的個體,借助招投標與直接銷售兩種模式,但在未來,將渠道工作交給影像設備企業(yè)、PACS廠商,自身專注于細分賽道的研發(fā),形成細致的行業(yè)分工,或能更加利于影像AI的快速發(fā)展。


目前國內(nèi)比較成熟的影像生態(tài)主要由GE醫(yī)療、飛利浦醫(yī)療、西門子醫(yī)療、聯(lián)影醫(yī)療四家企業(yè)構建,各企業(yè)在影像設備國產(chǎn)化程度、智能解決方案發(fā)展?jié)摿Γㄖ袊?、智能化生態(tài)開放共享程度、影像設備發(fā)展?jié)摿Γㄖ袊⒂跋裨O備融合能力、影像數(shù)據(jù)互聯(lián)互通能力上各有千秋。


微信圖片_20221009133842.png

 各生態(tài)能力對比(數(shù)據(jù)來源:蛋殼研究院)


除上述四家龍頭之外,東軟醫(yī)療、賽諾威盛等影像設備廠商也在協(xié)同軟硬件共同發(fā)展,富士膠片(中國)、衛(wèi)寧健康等信息化龍頭亦有努力擴充生態(tài)。生態(tài)之間的戰(zhàn)爭將在長期打響,這個過程之中,影像AI企業(yè)可能在盈利的道路上跑得更快。


  新場景、新模式,

開啟醫(yī)療AI發(fā)展新篇章


與互聯(lián)網(wǎng)、5G等跨領域技術一致,AI是這個時代少有的能夠獨立形成產(chǎn)品體系的技術,但在醫(yī)療領域之中,AI的應用相對有限。如今醫(yī)院對于醫(yī)療AI的認知逐步形成體系,監(jiān)管體系逐步完善,企業(yè)搭建的AI產(chǎn)品矩陣中可適用的應用場景隨之不斷擴大。


新形勢下,醫(yī)療“AI+”正不斷向醫(yī)療“+AI”進行演進,其作用場景也從診療不斷向科研、保險等場景不斷延伸,構造新的市場增量。


從第一落點醫(yī)療機構向外擴展,既是AI開辟增量市場的有效途徑,又是醫(yī)療器械審慎性審評審批選擇下的被動之舉。歸結起來,醫(yī)療AI目前較為成熟的增量產(chǎn)品發(fā)展主要集中于C端與B端中的保險、藥企部分,影像AI弱化了AI的醫(yī)療器械屬性,基于NLP的知識圖譜則在醫(yī)療之外納入了更多維度的數(shù)據(jù)。


“揚帆出?!笔茿I企業(yè)尋找增量市場的另一路徑,目前有海外市場開拓計劃的企業(yè)包括新藥研發(fā)類AI與影像類AI。新藥AI企業(yè)主要與海外藥企輔助藥物研發(fā)關系,借助AI能力對新藥研發(fā)部分流程進行優(yōu)化提速。影像類AI的情況則相對復雜,市場準入作為商業(yè)化的開端,能夠一定程度衡量AI企業(yè)的海外拓展水平。


微信圖片_20221009133847.png

 CE、FDA、PMDA獲證情況統(tǒng)計(不包含醫(yī)療影像設備制造商,數(shù)據(jù)來源:蛋殼研究院蛋殼研究院制)


此外,公益路徑作為影像AI在2020年前無法突破國家藥監(jiān)局審評審批形勢時采用的過渡手段,也已成為當前AI尋求新增量的重要形式。通過公益的方式落地,影像AI企業(yè)能在幫助國家推動腫瘤、眼科等疾病的早篩工作,亦能幫助AI產(chǎn)品提前適應市場。